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for Free-Space Variable Optical Attenuators
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Abstract—Novel closed-form attenuation models have been de-
veloped for free-space variable optical attenuators (VOAs)—one
deals with the near-field condition when the two single-mode fibers
are aligned very close to each other while the other deals with
the far-field condition. In both models, the relationship between
mirror (i.e., shutter) position and attenuation is represented by a
constant term and another term in the form of an extended error
function. The constant term determines the insertion loss, while the
error function defines the shape of the attenuation curve. Com-
pared with the conventional model that employs time-consuming
numerical integrals, these two models show clearly the physical
picture of the attenuation mechanism and provide closed-form ex-
pressions of attenuation versus mirror position. They are compu-
tationally efficient for attenuator design and optimization. Numer-
ical calculation and experimental study have also been carried out
to verify the attenuation models developed in this paper.

Index Terms—Dense wavelength-division multiplexing
(DWDM), fiber-optic communication, microelectromechanical
systems (MEMS), variable optical attenuator (VOA).

I. INTRODUCTION

VARIABLE optical attenuators (VOAs) are the key com-
ponents in fiber optical communication systems and

have wide applications, such as protecting the sensitive optical
receivers, equalizing the power levels of multiple wavelength
channels, and flattening the gain of optical amplifiers [1], [2].
Various technologies have been applied to VOAs, such as the
Mach–Zehnder interferometer [3], the thin-film filter [4], and
the acoustic-wave-induced diffraction [5]. However, attenua-
tors that use shutters/knife edges to block a portion of light
in free space have been extensively developed [6]–[10] since
they can provide large attenuation range, low insertion loss,
and small wavelength/polarization dependence. However, the
conventional optomechanical attenuators have slow speed and
bulky size, limiting their applications. Microelectromechanical
systems (MEMS) technology opens up a new opportunity
for free-space attenuators and has shown their competence to
provide excellent optical and mechanical performances with
additional advantages of high compactness, batch fabrication,
and low cost [4], [6]–[9].

The free-space VOAs can be implemented using either the ex-
panded laser beams or the beams directly from the single-mode
fibers (SMFs) (i.e., butt coupling). Fig. 1 illustrates the typ-
ical configurations. Collimating lenses and quarter-pitch gra-
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Fig. 1. Typical configurations of the free-space attenuators. (a) Light beam
expanded by collimating lenses, (b) by GRIN lenses, and (c) by butt coupling.

dient-index (GRIN) lenses are commonly used to expand the
light beams, as shown in Fig. 1(a) and (b), respectively. The
expanded-beam type has advantages of high attenuation reso-
lution, low insertion loss, and low requirement of mirror posi-
tion control, making it a good choice for conventional optome-
chanical VOAs. The butt-coupling type does not need any op-
tical lens; the configuration is simple and compact, as shown in
Fig. 1(c). However, the fibers need to be aligned precisely and
very near to each other so as to reduce the insertion loss, and the
mirror movement should be fine and stable. The MEMS tech-
nology meets these requirements. Although various free-space
VOAs have been developed, not much effort has been made to
address the issue of optical modeling. In free-space VOAs, the
attenuation model, which represents the relationship between
the attenuation and the mirror (shutter) position, is a key con-
cern for design and optimization. The conventional method is
based on the complicated Fresnel–Kirchhoff diffraction inte-
gral and mode-overlap integral [10]. It is straightforward but
has to involve very time-consuming numerical calculation since
the integrals do not have analytical solutions. The influence of
the structure parameters on the attenuation cannot be predicted
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without engaging a large amount of calculations, and any pa-
rameter change needs to be recalculated. Besides, the accuracy
of the simulation results seriously depends on the grid dimen-
sion and the integral areas. If the grid is not fine enough, this
method results in error. As an example, when the grid is coarse,
the attenuation value tends to approach a certain value (like sat-
uration) in the high attenuation region, as shown in [10, Fig. 7].
However, this prediction is wrong. When the mirror fully blocks
the light, the attenuation should be infinity and does not saturate.
Therefore, in the conventional method, the fine grid should be
used. However, the calculation time increases tremendously. In
brief, the conventional method is inconvenient for attenuator de-
sign and optimization. The difficulty of the conventional method
mainly comes from the fact that it deals with the diffraction and
the mode-coupling separately while both are not integrable. If
the two integrals are mathematically solved at the same time and
also induce some reasonable simplifications, an analytical result
may be reached. This paper is motivated by this idea.

The objective of this paper is to develop attenuation models
in analytical form for the free-space VOAs. The analytical form
inherently enables fast design and improves the physical un-
derstanding of the VOAs. In Section II, the conventional atten-
uation model will be first investigated in detail, and then the
far-field model and the near-field model will be derived. The
definition of near-field and far-field is determined by comparing
the distance from the mirror to the output fiber with the Rayleigh
range of the Gaussian beam. If the distance is much smaller than
the Rayleigh range, it is near-field; otherwise, it is far-field. The
analytical form of the attenuation models represents the phys-
ical relationship to guide the attenuator design and also enable
faster computation. In Section III, the numerical verification and
the experimental results will be discussed. The results predicted
by the near-field mode are very close to those given by the con-
ventional model in the near-field condition, while the far-field
model gives good agreement with the conventional model in the
far-field condition.

II. ATTENUATION MODELS

The following three assumptions are used throughout the
paper:

1) the scalar optical assumption, i.e., the scalar optical
theory is valid;

2) the Gaussian beam assumption, i.e., the light trans-
mitted in a weakly guided SMF can be approximated by
Gaussian distribution;

3) the mirror assumption, i.e., the thickness of the mirror is
negligible but thick enough to block all the light in the
area it covers, the mirror has smooth and straight edge,
and it is infinitely large and moves along the axis from

.

The following two assumptions are used in deriving the far-field
model and the near-field model, respectively:

4) the far-field assumption (or far-field condition), i.e., the
output fiber is far from the mirror plane, more specifically,

(which will be discussed subsequently);
5) the near-field assumption (or near-field condition), i.e.,

the output fiber is very close to the mirror plane, more

Fig. 2. Diagram for attenuation model of free-space butt-coupling VOA.

specifically, (which will also be discussed sub-
sequently).

Using the Gaussian beam assumption, the light from an SMF
is a Gaussian beam with its waist at the fiber facet [11]. In the
butt-coupling VOA, the Gaussian beam from the plane is first
transmitted to the plane and then coupled into the output
fiber, as shown in Fig. 1(c). and stand for the positions
of the beam waists of the input fiber and the output fiber, re-
spectively. They are right at the facets of the fibers. In the col-
limated-lens type, the light remains a Gaussian beam after ex-
panded by the lens, but the position of the beam waist changes to
the plane . The size and position of the beam waist was studied
by Self [12]. Similarly, the lens in the output part also has a
corresponding plane . Only a Gaussian beam in this plane
with a certain beam waist can be fully coupled into the output
fiber. In the GRIN lenses configuration, the waist of the ex-
panded Gaussian beam is at the GRIN facet [13]. Consequently,
by studying the beam propagation and coupling between the
planes and , the two expanded-beam configurations follow
the same coupling model as the butt-coupling one.

A. Conventional Model

The diagram illustrating the attenuation model of a free-space
butt-coupling VOA is shown in Fig. 2. The conventional method
uses the light propagation and coupling theories straightfor-
wardly and follows what really happens in the VOA step
by step. The light beam from the input SMF propagates to
the mirror plane and is partially blocked by the mirror (as a
shutter). It is then diffracted to the accepting facet of the output
SMF and coupled into the output. In Fig. 2, , ,
and stand for the coordinate systems in the input fiber
facet, the plane after the mirror, and the output fiber facet,
respectively. To better explain the models, the plane right after
the mirror is named as the mirror plane and the output fiber
facet as the facet plane.

The fundamental mode of the light beam in the SMFs
can be approximated by [11]

(1)

where is the waist radius of Gaussian beam. The term
is used to normalize the light energy to be 1.
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After passing through a distance , the light beam reaches
the mirror plane and is partially blocked by the mirror, and the
field distribution can be expressed as [11] (2), shown at
the bottom of this page, where is the position of the mirror
edge, stands for the wavelength, and , , and represent
the wave number, the Rayleigh range, and the waist radius of
Gaussian beam in the mirror plane, respectively, as given by [11]

(3a)

(3b)

(3c)

The light beam is then diffracted to the facet plane. The field
distribution can be expressed using the Fresnel–Kirch-
hoff diffraction formula [14]

(4)
where is the separation between the mirror and the output
fiber facet (as shown in Fig. 3), is the integral area, and
and represent the distance and the angle between the point

in the mirror plane and the point in the output
fiber facet given by

(5)

(6)

The coupling efficiency represents how much the field dis-
tribution is coupled to the fundamental mode
of the output fiber. It can be obtained by the mode-overlap inte-
gral [15]

(7)
where is the conjugate of , which can be ex-
pressed by

(8)

is the same as (1) except the coordinate system is
rather than since the output fiber is identical to the input
fiber. The physical meaning behind this mode-overlap integral is
that can be expanded on the bases of a set of orthogonal

Fig. 3. Diagram of light-beam diffraction from the mirror plane to the facet
plane.

fiber modes, and (7) expresses the fractional power on the base
of .

The transmission efficiency from the input fiber to the
output fiber is given by

(9)

The condition that and have unit energy is
used. Finally, the attenuation of the VOA is given by

(10)

The conventional model expressed in (1)–(10) uses the
accurate diffraction formula; thus, it is valid for various optical
attenuators. In addition, it can be used to study the field pattern in
any position between the two fibers. Fig. 4 illustrates the calcu-
lated diffracted patterns at the mirror plane and the facet plane.
Fig. 4(a) shows the amplitude and phase distributions in the
mirror plane when 10 m and 0 m (i.e., half of the
beam is blocked). Within the 15 15- m observation window,
the amplitude pattern has a sudden change across the mirror edge
(due to cutoff by the mirror), and most of energy concentrates
in a small region. The phase also experiences great changes in
the window area (from 20 to 150 ). However, it does not vary
significantly in the high-amplitude region. Fig. 4(b) and (c) indi-
cates the diffracted patterns in the facet plane when 10 m
and 500 m, respectively. The values of are intentionally
selected to study the near-field pattern and the far-field pattern.
In Fig. 4(b), the amplitude has smooth but irregular contours
and is also confined in a small region. The phase exhibits rapid
change in the direction perpendicular to the mirror edge but
slow change in the other direction. This is due to the knife-edge

(2)
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(a)

(b)

(c)

Fig. 4. Amplitude and phase patterns at the mirror plane and the facet planes
when half of the input light is blocked (� = 0 �m): (a) in the mirror plane
(z = 10 �m); (b) near-field patterns in the facet plane when z = 10 �m; and
(c) far-field patterns in the facet plane when z = 500 �m.

diffraction. In Fig. 4(c), the amplitude and phase distributes
smoothly. The amplitude contours appear to be elliptical, while
the phase tends to be circular. One interesting point is the change
of the pattern centers. In Fig. 4(a), both the amplitude and phase
centres are at 0 m. In Fig. 4(b), they shift nearly identically
to about 2 m. However, in Fig. 4(c), they are separated.
The amplitude center moves to about 2.5 m, while the
phase one moves to about 4 m. These observations suggest
that the near-field case is very different from the far-field one,
and therefore, different treatments may have to be used in the
simplification/analysis. Other parameters in this diffraction
pattern study are 1.55 m and 5.2 m (Corning®

SMF-28 SMF [16]).
The conventional method has to employ time-consuming nu-

merical integrals since (4) and (9) are commonly not integrable.
Besides, the conventional model cannot show the analytical re-
lationships between the parameters. In the design and optimiza-
tion of the attenuator, any change of the parameters results in
another round of numerical calculation, making it very tedious.
Some simplifications should be engaged to obtain a simple an-
alytical result.

B. Far-Field Attenuation Model

Under the far-field assumption, it implies for
common SMFs. Therefore, the diffraction from the mirror
plane to the facet plane can be treated as far-field diffraction.
As a result, the attenuation model becomes a far-field model
for optical attenuator.

The field distribution in the mirror plane can be sim-
plified as (see Appendix A)

(11)

Here, the constant phase term is neglected, and is a variable
given by

(12)

Under the far-field assumption, and
. Substituting into (4), it gives

(13)

Finally, the analytical expression of the transmission effi-
ciency can be derived. In (9), let represent the overlapping
integral as expressed by

(14)

By swapping the integral order and after some mathematical
manipulations, can be expressed as (see Appendix B)

(15)

where

(16a)

(16b)

(16c)

(16d)

and are real (17)

, , , and are temporary variables. is the extended error
function, which simulates the definition of the error function
[13]; however, it deals with complex variables, while the error
function is limited to real.
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Fig. 5. Attenuation model of the near-field condition.

Substituting (13) and (15) into (9) gives

(18)

where

(19)

Finally, the attenuation can be obtained using (10).
It is noted that when and are fixed and the mirror moves,

the first term in (18) contributes to the attenuation as a constant
bias (i.e., insertion loss), whereas the second term defines the
shape of the curve. The curve shape is determined by the ex-
tended error function. The key features in the mathematical op-
eration of this far-field model are swapping the integral order
and expanding under the far-field condition. As a result,
the integrals become integrable. The analytical result reveals
the direct relationship between the mirror position and the at-
tenuation. The attenuation can be estimated without engaging
time-consuming numerical integrals.

C. Near-Field Attenuation Model

In most of the MEMS VOAs, the near-field assumption is
valid. Under this assumption, it is reasonable to assume that the
beam pattern in the facet plane does not vary significantly from
that in the mirror plane. Based on this consideration, the diagram
of the attenuation model is simplified as shown in Fig. 5. The
physical concept is that the mirror is shifted to the facet plane.
The light from the input fiber first propagates to the combined
mirror plane and facet plane; it is then blocked by the mirror and
coupled into the output. In contrast, in the far-field model, the
light first propagates to the mirror plane, immediately blocked
by the mirror, and then it propagates to the facet plane before
being coupled into the output. Viewed from the point of calcu-
lation order, the difference is that the light in the far-field model
is first blocked and then diffracted, whereas in the near-field
one, the order is swapped. From (11), the beam pattern in
the facet plane can be simplified as

(20)

where is the waist radius given by

(21)

Then, the transmission efficiency can be derived to be (see
Appendix C)

(22)

where , , and are variables given by

(22a)

(22b)

(22c)

Finally, the attenuation can be obtained using (10).
Equation (22) reveals the direct relationship between the at-

tenuation and the mirror position in near-field condition. Sim-
ilar to that in the far-field model, when the fiber separation (i.e.,

) is fixed and the mirror moves, the first term of (22) gives
a fixed attenuation, whereas the second term given by the ex-
tended error function defines the shape of the curve. The key fea-
ture of this model is making the integrals integrable by replacing
the knife-edge diffraction with the Gaussian-beam diffraction
between the mirror plane and the facet plane.

For a special condition when and , (22)
can be further simplified to be (see Appendix C)

(23)

This equation is valid only under conditions given previously
here and may have very limited applications.

III. DISCUSSIONS AND EXPERIMENT

A. VOA With Tilting Mirror

The diagrams of the attenuation models in Figs. 2 and 5 as-
sume implicitly that the mirror moves perpendicularly to the op-
tical axis between the two fibers. However, the mirror can also
be configured to tilt at a certain angle, as shown Fig. 6. In this
way, the back reflection can be greatly reduced if the angle is
properly chosen (8 or 12 ) [7], [18]. The near-field model can
be used directly since the fiber separation does not change with
the mirror position. In the far-field case, the far-field model can
be used by varying and with the position of the mirror as
expressed by

(24)

(25)

where stands for the tilting angle, and and denote
the distances from the mirror to the input and the output fiber,
respectively, when the mirror moves to the optical axis. It is
noted that is negative when the mirror is below the optical
axis.
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Fig. 6. VOA using a tilting mirror.

Fig. 7. Comparison of the insertion loss given by different attenuation models.
Discrepancy A and B represent the differences of the far-field model with Yuan’s
model and the near-field model with Yuan’s model, respectively.

B. Numerical Analysis

To verify the validity of the far-field and the near-field model,
the insertion losses predicted by the models are first examined.
When , that is, the mirror is fully out of the light path,
the attenuation between the two fibers represents the insertion
loss. According to (18) and (22), insertion losses predicted by
the far-field and the near-field model and are given by

(26)

(27)

The variables , , , , , and are as defined in (16a)–(16d),
(22b), and (22c).

A widely used insertion-loss model was developed by Yuan et
al. in [13]. If only the fiber separation is considered, the insertion
loss can be expressed as

(28)

The comparison is shown in Fig. 7. When the fiber separa-
tion changes from 5 to 500 m, the attenuation gradually in-
creases from 0.03 to 13.5 dB. The curves of the models are very
close. Discrepancy A shows the difference between the far-field
model and Yuan’s model, while Discrepancy B shows the differ-

(a)

(b)

Fig. 8. Comparison of the attenuation models. (a) z = z = 10 �m
(near-field condition); (b) z = z = 500 �m (far-field condition).
Discrepancy A and Discrep. A represent the differences of the far-field model
with Yuan’s model, and Discrepancy B shows the difference of the near-field
model with Yuan’s model.

ence between the near-field model and Yuan’s model. The max-
imum discrepancy of insertion loss is smaller than dB.
Therefore, the far-field and the near-field model predict the in-
sertion losses very accurately.

Then, the attenuation models are compared with the conven-
tional model in the cases of 10 m and

500 m, as shown in Fig. 8(a) and (b), respectively. The
input and output fibers are identical, both use Corning SMF-28
SMF ( 5.2 m and 54.8 m). Therefore, it sat-
isfies the near-field condition for 10 m and the
far-field condition for 500 m. In the near-field case,
as show in Fig. 8(a), the attenuation varies from about 0.14 to
95 dB when the mirror moves from 10 to 11 m. The three
models overlap each other. Discrepancy A shows the difference
between the far-field model and the conventional model, and
Discrepancy B shows the difference between the near-field and
the conventional model. The near-field model is nearly identical
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to the conventional model, especially when the mirror position is
less than 5 m. The maximum difference is 0.28 dB ( 0.3 )
when the mirror position is at 11 m. In contrast, the far-field
model predicts higher attenuation in the low attenuation level
(0.14–dB deviation) and considerably lower value in the high at-
tenuation range (maximum deviation 2.3 dB). Therefore, the
near-field model is valid in the near-field condition.

In the far-field case, as show in Fig. 8(b), the near-field differs
from the conventional model significantly, while the far-field
model does marginally. The attenuation given by the far-field
model changes from 13.5 to 41.4 dB when the mirror moves
from 20 to 30 m. Discrep. A represents the difference be-
tween the far-field model and the conventional model. The devi-
ation ranges within 0.62 ( 2 ) to 0.61 dB ( 2 ). There-
fore, the far-field model is suitable for the far-field condition.

It is also observed in Fig. 8 that the attenuator has small in-
sertion loss and high attenuation range if the fibers are aligned
very close to each other (near-field configuration), but the atten-
uation curve is very nonlinear. On the contrary, the attenuator
of the far-field configuration has a linear attenuation curve but a
high insertion loss and small attenuation range. A good design
for attenuators should compromise between them.

The far-field and near-field models have great advantages
over the conventional model in term of computational speed.
As an example, the conventional model takes a computer time
of 2.3 h to calculate the attenuation value corresponding to one
mirror position. It is very tedious to obtain the entire curve
of attenuation versus mirror positions. In contrast, the far-field
model needs 2-ms computer time, while the near-field model
requires only 0.4-ms computer time. A grid of 0.25 m and an
integral area of 30 30 m are used for the conventional model.
Computer and software are the same when comparing the speed
of the three models.

C. Experimental Verification

To verify the attenuation model, a MEMS VOA has been de-
veloped, as shown in Fig. 9. Two SMFs are aligned very close
to each other, one as input fiber and the other as output fiber. A
mirror is inserted into the light path between the two fibers as a
shutter to block a portion of the light. To obtain variable atten-
uation, a proprietary drawbridge actuator [6], [19] is employed.
The mirror located at the end of a L-shaped plate is mounted
vertically on a mounting plate by a side holder. The mounting
plate is hung over the substrate by a triangular drawbridge struc-
ture. Three thin bending beams are used to connect the mounting
plate to the holding plate. When a potential difference is applied
between the mounting plate and the electrode (on the substrate),
the bending beams deform, and thus, the mirror moves down.

The MEMS VOA is fabricated using the silicon surface mi-
cromachining technology. The close-up of the mirror and the
input fiber is shown in Fig. 10. The fibers are aligned using
translation stages and then fixed to the substrate through the use
of a strong adhesive. The distances between the fiber terminals
and the mirror are both about 10 m. The flat mirror has a size of
40 40 m and is formed by coating a 0.5- m-thick gold layer
on a 1.5- m-thick polysilicon layer. The gold layer helps to fully
block the light since the polysilicon layer is nearly transparent
to the infrared light. The lower edge of the mirror is designed

Fig. 9. Schematic of the MEMS VOA using drawbridge actuator.

Fig. 10. Scanning electron microscope (SEM) micrograph of the MEMS
VOA.

Fig. 11. Comparison of the experiment with the near-field model.

to be 66 m high over the substrate, which allows most of the
light to pass through when no voltage is applied.

The measurement data is compared with the near-field model,
as shown in Fig. 11. The VOA has an insertion loss of 1.5 dB at a
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Fig. 12. Wavelength dependence of the VOA at different attenuation levels.

1.55- m wavelength when no voltage is applied. This insertion
loss is mainly introduced by three sources: 1.0 dB from the an-
gular/lateral misalignment between the input and output fibers
that are fixed to the substrate by the adhesive; 0.4 dB from the
Fresnel reflection of air/glass interfaces in the fiber ends; and
0.1 dB from the fiber separation. To make the simulation com-
parable to the experiment, an insertion loss of 1.4 dB is added
to the simulation data. When the mirror is actuated to move in
the light path, the attenuation continuously increases to its max-
imum value of 45 dB when the mirror moves to about 7 m.
Further movement of the mirror does not produce higher attenu-
ation as predicted by the near-field model since the signal power
becomes too weak in our experimental setup and has reached the
detector noise floor. In Fig. 11, the simulation result using the
near field model is very close to the experimental result over the
attenuation range.

The wavelength dependence of the VOA is shown in Fig. 12.
In the measurement, the VOA is first set at a certain attenuation
level, and then a tunable laser source (ANDO AQ4321) is used
to sweep the input wavelength from 1520 to 1620 nm. Fig. 12
illustrates the attenuation fluctuations when the VOA is set at 20
and 40 dB, respectively. Both curves are irregular and have the
same trend. However, the curve of the 40 dB is not as smooth
as that of the 20 dB, probably due to the noise. In Fig. 12, the
peak-to-peak variation is measured to be about 0.20 dB at the
20-dB level and 0.38 dB at the 40-dB level. The VOA also has
the variations of 0.17 and 0.35 dB at the attenuation levels of 10
and 30 dB, respectively (not shown in Fig. 12). The wavelength
dependence variation tends to increase with the increase of the
attenuation level, but the value is small. In this sense, the VOA
is not seriously wavelength dependent.

IV. CONCLUSION

Analytical attenuation models are developed for free-space
optical attenuators with near-field and far-field configurations.
Numerical and experimental studies show that the near-field
and the far-field model are accurate in their specific conditions.
The near-field model is especially useful for MEMS VOAs

since most of the designs use very small fiber separation so as
to reduce the insertion loss. Although the attenuation models
are studied for the attenuators using butt-coupling fibers, they
apply equally well to the attenuators using collimating lenses
and GRIN lenses. In addition, they are useful for studying the
transient state of optical switches and optical cross-connects,
i.e., the change of optical signals when one channel is switched
ON/OFF. The attenuation models are developed based on the
scalar optics; the influence of the polarization and the precise
shape of mirror edge, which may not be negligible at very high
attenuation levels, needs further study.

APPENDIX A
SIMPLIFICATION OF LIGHT BEAM IN THE MIRROR PLANE

When , by using the relationships that ,
, and , (2) can be further de-

rived to be

(A1)

where

(A2)

and is an phase term given by

(A3)

Ignore the constant phase term in (A1), and then

(A4)

APPENDIX B
SIMPLIFICATION OF OVERLAPPING INTEGRAL IN THE

FAR-FIELD MODEL

The term needs to be expanded to the polynomial of , ,
, and . Otherwise, (13) is not integrable. In the mirror plane,

most of the light energy of the Gaussian beam is emitted from a
limited area. Similarly, in the facet plane of the output fiber, only
the light passing through the limited area around the core con-
tributes to the output. For example, if the interested area in the
mirror plane is a circle with radii of , the light energy out of
this area is only about of the total energy. From this point
of view, the attenuator has small apertures, and therefore, the
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beam propagation can be treated as a Fresnel diffraction [11].
is approximated to the first order as

(A5)

Substituting (11) and (13) into (14) and swapping the integral
order obtains

(A6)

Let

(A7)

where and are temporary variables given by

(A8)

(A9)

Neglecting the constant phase term and then substituting (11)
and (A7) into (A6) reaches

(A10)

where

(A11)

(A12)

and is the extended error function defined by

and are real (A13)

The extended error function simulates the definition of the error
function so as to deal with the complex whereas the error func-
tion is limited to the real.

APPENDIX C
TRANSMISSION EFFICIENCY OF THE NEAR-FIELD MODEL

From (9), the transmission efficiency can be expressed as

(A14)

where and are intermediate variables representing

(A15)

(A16)

In case of and , it is reasonable to let
. As a result, and

Equation (A14) can be further simplified to be

(A17)
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